The effect of ethanol on human brain metabolites longitudinally characterized by proton MR spectroscopy.

نویسندگان

  • Armin Biller
  • Andreas J Bartsch
  • György Homola
  • László Solymosi
  • Martin Bendszus
چکیده

The effect ethanol exerts on the human brain has not yet been addressed by longitudinal magnetic resonance (MR) spectroscopic experiments. Therefore, we longitudinally characterized cerebral metabolite changes in 15 healthy individuals by proton magnetic resonance spectroscopy ((1)H-MRS) subsequent to the ingestion of a standard beverage (mean peak blood alcohol concentration (BAC): 51.43 +/- 10.27 mg/dL). Each participant was examined before, over 93.71 +/- 11.17 mins immediately after and 726.36 +/- 94.96 mins (12.11 +/ -1.58 h) past per os alcohol exposure. Fronto-mesial and cerebellar ethanol concentrations over time were similar as determined by the LCModel analysis of spectral data. Alcohol-induced changes of fronto-mesial creatine, choline, glucose, inositol and aspartate levels at 5.79 +/- 2.94 [corrected] mins upon ingestion as well as cerebellar choline and inositol levels at 8.64 +/- 2.98 [corrected] mins past exposure. Closely associated with ethanol concentrations, supratentorial creatine, choline, inositol and aspartate levels decreased after ethanol administration, whereas glucose levels increased. Similarly, infratentorial choline and inositol concentrations were negatively correlated with ethanol levels over time. There were no changes in N-acetyl-aspartate levels upon alcohol exposure. Furthermore, no influence of ethanol on brain water integrals was detected. Ethanol consumption may directly increase oxidative stress and the neuronal vulnerability to it. In addition, our results are compatible with ethanol-induced cell membrane modifications and alternative energy substrate usage upon alcohol exposure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Resonance Spectroscopy Data Quantification

(Nuclear) Magnetic Resonance ((N)MR) is a non-invasive technique that has been used to acquire spatially resolved images of living organisms. Another application of clinical MR is MR Spectroscopy (MRS) in which chemical information can be extracted from a well-defined region (e.g. a voxel) in for example the human brain [de Graaf, 1998]. Brain tumors [Nelson, 1999], multiple sclerosis, epilepsy...

متن کامل

Acute Ethanol-Induced Changes in Edema and Metabolite Concentrations in Rat Brain

The aim of this study is to describe the acute effects of EtOH on brain edema and cerebral metabolites, using diffusion weight imaging (DWI) and proton magnetic resonance spectroscopy ((1)H-MRS) at a 7.0T MR and to define changes in apparent diffusion coefficient (ADC) values and the concentration of metabolites in the rat brain after acute EtOH intoxication. ADC values in each ROI decreased si...

متن کامل

Development and aging of the cerebrum: assessment with proton MR spectroscopy.

BACKGROUND AND PURPOSE MR spectroscopy allows the noninvasive evaluation of in vivo brain metabolites. Our purpose was to use this technique to assess metabolic alterations in the human cerebrum during growth, maturation, and aging. METHODS Ninety normal human brains in subjects aged 4 to 88 years were examined with multivoxel proton MR spectroscopy. Spectra were obtained from specific voxels...

متن کامل

Assessment of Cerebellar Metabolites Levels in Athletes Compared to Non-Athlete by Proton Magnetic Resonance Spectroscopy

Background: Adaptability to exercise training can increase the plasticity of the brain, and whether this can be due to a beneficial change in the neurometabolites, is uncertain. The purpose of this study was to evaluate basal metabolic concentrations of cerebellum, including N-acetyl aspartate (NAA) and Cholin(Cho) in athletes and compare them with non-athlete subjects. Materials and Methods: I...

متن کامل

Effects of physiologic human brain motion on proton spectroscopy: quantitative analysis and correction with cardiac gating.

SUMMARY Proton MR spectroscopy is a powerful noninvasive method that enables measurement of certain brain metabolites in healthy subjects and patients with diseases. A major difficulty with clinical and research applications of in vivo proton MR spectroscopy is the variability of metabolite concentrations, especially in regions with substantial physiologic motion. In our preliminary evaluation,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism

دوره 29 5  شماره 

صفحات  -

تاریخ انتشار 2009